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Carlo (MCMC) random walks, is an efficient way for sampling from quantum

state space, due to its high and controllable acceptance rate, as well as its not

strongly correlated sample points. Under suitable parameterizations of the den-

sity matrix and proper programming implementation, we are able to simulate and

obtain samples with considerate amount of data, with respect to various prior

probabilities. Properties of the samples are further analyzed, such as the proba-

bility distributions of purity, fidelity, distance, etc.
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Chapter 1

Introduction

1.1 Point Likelihood

Quantum state tomography is the attempt of reconstructing a quantum state,

by performing measurements on quantum systems described by identical density

matrix ρ. Ideally, the measurements should be informationally complete, i.e., the

measurement operators form an operator basis of the Hilbert space of the system

being measured.

Generally, for a set of probability-operator measurement (POM) of K outcomes,

the positive operators {Πi} sum up to unity,

K∑
i=1

Πi = 1 (1.1)

Identical copies of a state ρ are measured repeatedly by this POM, resulting in

probabilities of detector clicks

pi = Tr{ρΠi} = 〈Πi〉 (1.2)

for the i-th detector, and they satisfy the following properties,

pi ≥ 0,

K∑
i=1

pi = 1 (1.3)

1
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After measuring N identical copies of the state ρ, we obtain measurement data

D, formed by a sequence of detector clicks {n1, n2, . . . , nK} with

K∑
i=1

ni = N (1.4)

where ni is the number of clicks for the i-th detector.

The probability of obtaining data D for a given state ρ is given by the point

likelihood

L(D|ρ) = pn1

1 pn2

2 . . . pnK

K =

K∏
i=1

pni

i (1.5)

The maximum-likelihood estimator (MLE) for state ρ is thereafter computed by

maximizing the above equation. However, this point estimator is of limited power

to make statistical inferences, as we will not be able to tell if the probability distri-

bution is sharply peaked at MLE, or widely spreads out over the entire region. In

order to answer such questions, we need to find a way to construct and characterize

error bars and error regions.

1.2 Estimator Regions

1.2.1 Prior density

Before any measurement data D, our prior knowledge about the quantum system

is called the prior probability. The size of an infinitesimal vicinity of state ρ,

denoted by (dρ), is

(dρ) = w(p)(dp) (1.6)

where w(p) is the prior density, and (dp) = dp1dp1· · · dpK is the infinitesimal

volume in the probability space defined by the set of probabilities {p1, p2, . . . , pK}.
The size[1] of a region R is defined as the probability that state ρ lies within the

region and denoted by SR,

SR =

∫
R

(dρ) =

∫
R
w(p)(dp) (1.7)

with

SR0
=

∫
R0

(dρ) = 1 (1.8)

for the entire state space R0.
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1.2.2 Posterior density

The posterior density of state ρ is the conditional probability after measurement

data D is taken into account, which is

P (ρ|D) =
L(D|ρ)

L(D)
(1.9)

where L(D) is the prior likelihood of measurement data D, by integrating L(D|ρ)

over the entire space R0, i.e.,

L(D) =

∫
R0

L(D|ρ)(dρ) =

∫
R0

L(D|p)w(p)(dp) (1.10)

We further define the credibility[1] of region R, denoted by cR, to be the posterior

probability of state ρ lies within the region, given measurement data D,

cR =

∫
R L(D|ρ)(dρ)∫
R0
L(D|ρ)(dρ)

=
1

L(D)

∫
R
L(D|p)w(p)(dp) (1.11)

1.3 Monte Carlo Integration

1.3.1 Motivation

In order to compute SR and cR in Equations 1.7 and 1.11, a K-dimension integral

is envolved, since the infinitesimal volume in probability space is given by

(dp) = dp1dp1· · · dpK (1.12)

As we shall see later in Chapter 3, for a d-dimensional density matrix ρ, there

are (d2 − 1) independent variables. Upon a re-parameterization of state ρ from

probability space to a certain parameterization space, the integral is in fact of

dimension (d2 − 1), i.e.,

(dρ) ∝ (dp) ∝ (dθ), where (dθ) = dθ1dθ2· · · dθd2−1 (1.13)

For instance, in the 2-qubit case, density operator ρ is a 4 × 4 matrix and the

integral would become 15-dimensional. The dimensionality rapidly increases to 63

for a 3-qubit state.

Hence we employ the idea of Monte Carlo integration, where random sample points

are generated based on our probability distribution w(p), or in other words, w(θ).

The values of integrand are then evaluated at these sample points, and finally the
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integral is estimated numerically by a weighted sum over these values.

The sampling strategy is, however, not unique. In this work, we use Hamiltonian

Monte Carlo (HMC) algorithm, which is a typical Markov-chain Monte Carlo

(MCMC) method.1 In MCMC, sample points are generated based on a Markov

chain random walk, with respect to certain desired probability distribution. The

quality of the sample depends on the number of sample points, instead of the

dimensionality.

HMC algorithm is introduced in the next section. To implement HMC on quantum

systems, we also need a suitable parameterization method for density matrix ρ,

in terms of its (d2 − 1) independent variables. We demonstrate two possible ways

of parameterization in Chapter 2. It is therefore possible to obtain samples with,

typically, 1 million data points within reasonable amount of time2, subject to any

prior or posterior density. In Chapter 3, we show some of the results and discuss

properties of the samples. The MATLAB R© code used is attached in Appendix A

at the end of this report.

1.3.2 Hamiltonian Monte Carlo

In HMC, parameters {θi} are treated as position variables of an artificial system

evolving under Hamiltonian dynamics, where the Hamiltonian H is assumed to be

H(θ,Θ) =
Θ2

2
+ U(θ), (1.14)

where U(θ) is the potential energy given by U(θ) = − logw(θ), and {Θi} are the

associated canonical momentum variables. Here w(θ) is our target density distri-

bution.

More specifically, this Hamiltonian evolution is computed by the leapfrog method[3],

with the following procedure:

Step 1. Set i = 1, with initial condition {θ(i−1),Θ(i−1)}, and number-of-steps

L, time sub-interval ε = T/L.

Step 2. Compute Θ(i− 1
2) = Θ(i− 1)− ε

2∇U(θ(i− 1))

Step 3. Compute θ(i) = θ(i− 1) + εΘ(i− ε
2)

Step 4. Compute Θ(i) = Θ(i− 1
2)− ε

2∇U(θ(i))).

Step 5. Set i = i + 1 and return to Step 2. Escape the loop when i = L, the

desired number of steps.

1For other sampling strategies, see [2]
2On average, it takes around 10 ˜ 11 hours to generate 1 million data points using a personal laptop

with 5th Generation IntelR© CoreTM i7 Processors.
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Combined with the leapfrog method, we have the following steps for HMC algorithm[3]:

Step 1. Begin with i = 1, an arbitrary initial point θ(i), and time step T .

Step 2. Generate canonical momentum Θ(i) from a multivariate normal distri-

bution with unit variance.

Step 3. Using the leapfrog method, start from {θ(i),Θ(i)} and obtain {θ∗,Θ∗}
after a finite time period T .

Step 4. Compute the acceptance ratio3 a = min{eH(θ(i),Θ(i))−H(θ(∗),Θ(∗)), 1}

Step 5. Pick a random number b uniformly from range 0 < b < 1. If a > b, set

θ(i+1) = θ(∗); else let θ(i+1) = θ(i).

Step 6. Set i = i + 1 and return to Step 2. Escape the loop when i reaches

the target number of sample points.

As mentioned previously, in order to implement HMC on quantum systems, we will

need a parameterization method of density matrix ρ. In the following chapter, we

discuss two possible solutions to this problem, namely the Cholesky decomposition

and spectral decomposition of ρ.

3For high dimension problem, it is best to maintain an acceptance rate around 65%, by adjusting T
and L.





Chapter 2

Random Density Matrices

A density matrix ρ, or density operator, is a matrix that can be used to describe a

quantum system. It is a positive semidefinite, Hermitian operator of unit trace, i.e.,

Tr{ρ} = 1, and λi ≥ 0, (2.1)

where {λi} are the eigenvalues of ρ.

For a density matrix that lives in a d -dimensional Hilbert space, there are (d2 −
1) independent real parameters. In this chapter, we demonstrate two possible

parameterization methods for the density matrix.

2.1 Cholesky Decomposition

Every Hermitian, positive semidefinite density matrix ρ has a Cholesky decompo-

sition taking the form

ρ = A†A (2.2)

where A is an upper-triangular matrix with real and non-negative diagonal entries.

Hence

Tr{A†A} =
∑

1≤j≤k≤d

|Ajk|2 = 1 (2.3)

That is, the moduli of elements of matrix A are points lying on a sphere of di-

mension 1
2d(d + 1) − 1 = 1

2(d + 2)(d − 1). This sphere can be parameterized

by a set of angle parameters θ1, θ2, . . . , θ 1
2
(d+2)(d−1) with Cartesian coordinates

C1,C2, . . . ,C 1
2
(d+2)(d−1), S 1

2
(d+2)(d−1) defined by

7
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C1 = cos θ1, S1 = sin θ1,

Ck = Sk−1 cos θk, Sk = Sk−1 sin θk, for k = 2, 3, . . . ,
1

2
(d+ 2)(d− 1).

(2.4)

The upper-triangular matrix A is filled in with these Cartesian coordinates, which

consists of 1
2d(d + 1) number of entries in total, and its off-diagonal terms are

further supplemented by phase factors

Ek = e−iθk , for k =
1

2
d(d+ 1), . . . , d2 − 1. (2.5)

There are different ways of assigning the Cartesian coordinates and phase factors

to matrix A, and they are all equally valid. Written down explicitly in component

form, one possible way is given by

Aij =


0 if i > j

C 1
2
j(j+1) if i = j < d

S 1
2
(d+2)(d−1) if i = j = d

CmEm+n if i < j

(2.6)

with

m =
1

2
j(j − 1) + i, n =

1

2
(d+ 2)(d− 1)− (j − 1). (2.7)

The density matrix ρ is now parameterized in terms of the set of independent

variables {θ1, θ2, . . . , θd2−1}. The probability of the kth detector clicking, pk, is

given by

pk = Tr{A†AΠk} (2.8)

From the probability space characterised by these probabilities {p1, p2, . . . , pK},
to our parameterisation space defined by variables {θ1, θ2, . . . , θl}, we have the

Jacobian matrix
∂p

∂θ
= 2 Re

{
Tr
{
A†
∂A

∂θ
Π
}}

(2.9)

or, in component form,{
∂p

∂θ

}
ij
≡ ∂pi
∂θj

= 2 Re
{

Tr
{
A†

∂A

∂θj
Πi

}}
(2.10)

The prior or posterior density in p can be expressed in terms of θ,

w(p)→ w(θ) ≡
(
w(p)

∣∣∣∂p
∂θ

∣∣∣)∣∣∣
p in terms of θ

∝
∣∣∣∂p
∂θ

∣∣∣ (2.11)

where |∂p∂θ | is the Jacobian determinant.

In order to execute the HMC algorithm introduced in Chapter 1, we also need the
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gradient of “potential energy”, us(θ) =
∂U(θ)
∂θs

, which is proportional to

Tr
{{

∂p

∂θ

}−1

· 2 Re
{

Tr
{(

∂A†

∂θs

∂A

∂θ
+ A†

∂

∂θs

∂A

∂θ

)
Π
}}

(2.12)

where {∂p∂θ}
−1 refers to the matrix inverse of Jacobian matrix.

2.1.1 Example: Single qubit, d = 2

To parameterize ρ for a single qubit, we have

A =

(
C1 C2E3

0 S2

)
=

(
cos θ1 sin θ1 cos θ2 e

iθ3

0 sin θ1 sin θ2

)
(2.13)

and

ρ = A†A =

(
cos2 θ1

1
2 sin(2θ1) sin θ2 e

iθ3

1
2 sin(2θ1) sin θ2 e

−iθ3 sin2 θ1

)
(2.14)

The probabilities of corresponding Pauli matrices are given by

x = 〈σx〉 = sin (2θ1) sin θ2 cos θ3

y = 〈σy〉 = sin (2θ1) sin θ2 sin θ3

z = 〈σz〉 = cos (2θ1)

(2.15)

The Jacobian matrix is

∂p

∂θ
=

2 cos(2θ1) cos θ2 cos θ3 − cos θ3 sin(2 θ1) sin θ2 − cos θ2 sin(2 θ1) sin θ3

2 cos(2θ1) cos θ2 sin θ3 − sin (2 θ1) sin θ2 sin θ3 cos θ2 cos θ3 sin (2 θ1)

−2 sin (2 θ1) 0 0


(2.16)

Its determinant,
∣∣∣∂p∂θ ∣∣∣, is found to be

∣∣∣∂p
∂θ

∣∣∣ = sin3(2 θ1) sin (2 θ2) (2.17)

Finally, to implement HMC algorithm, we have the gradients of the potential

energy

u1(θ) = 6 cot(2 θ1)

u2(θ) = 2 cot(2 θ2)

u3(θ) = 0

(2.18)
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2.1.2 Example: Qubit pair, d = 4

Following the definition from Equations 2.4 and 2.5, we can decompose the density

matrix ρ for a qubit pair with

A =


C1 C2E10 C4E11 C7E13

0 C3 C5E12 C8E14

0 0 C6 C9E15

0 0 0 S9

 (2.19)

There are 15 independent variables, θ1, θ2, . . . , θ15. To compute the Jacobian ma-

trix and the potential gradient from Equations 2.9 and 2.12, we will need to take

first order, as well as second order derivatives of matrix A with respect to all these

θ variables. Unfortunately, unlike the trivial example of previous single qubit case,

we are unable to obtain analytic expressions at this stage. Instead, we develop a

numerical approach to perform HMC algorithm with MATLAB R©.

2.2 Spectral Decomposition

Spectral decomposition, or sometimes eigen-decomposition, is the factorization of

a square matrix in terms of its eigenvalues and eigenvectors. For our Hermitian

density matrix ρ, we can write

ρ = UDU † (2.20)

where U is a unitary matrix whose columns are the eigenvectors of ρ, and D is a

diagonal matrix of unit trace, formed by the eigenvalues of ρ.

The diagonal elements of matrix D are defined recursively with (d − 1) angle

parameters {α1, α2, . . . , αd−1} as

C1 = cos2 α1, S1 = sin2 α1,

Ck = Sk−1 cos2 αk, Sk = Sk−1 sin2 αk, for k = 2, 3, . . . , d− 1.
(2.21)

and matrix D = diag{C1, C2, . . . , Cd−1, Sd−1}
The unitary matrix U is decomposed into a set of elementary unitary trans-

formations in two-dimensional subspaces, with two independent variables {θ, ϕ}
for each subspace. Every 2-d elementary unitary transformation is denoted as
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U (i,j) = U (i,j)(θij , ϕij), and constructs the following (d− 1) rotations:

U1 ≡ U (1,2)(θ12, ϕ12)U (1,3)(θ13, ϕ13) · · · U (1,d)(θ1d, ϕ1d)

U2 ≡ U (2,3)(θ23, ϕ23)U (2,4)(θ24, ϕ24) · · · U (2,d)(θ2d, ϕ2d)

U3 ≡ U (3,4)(θ34, ϕ34)U (3,5)(θ35, ϕ35) · · · U (3,d)(θ3d, ϕ3d)

· · ·
Ud−1 ≡ U ((d−1),d)(θ(d−1)d, ϕ(d−1)d)

(2.22)

The elementary unitary transformation U (i,j)(θ, ϕ) has the following non-zero en-

tries,

U
(i,j)
mm = 1, for m = 1, 2, . . . , d, & m 6= i, j;

U
(i,j)
ii = U

(i,j)
jj = cos θ;

U
(i,j)
ij = eiϕ sin θ;

U
(i,j)
ji = −e−iϕ sin θ.

(2.23)

The unitary matrix U is given by the product of (d− 1) rotations,

U = U1U2U3· · ·U(d−1) (2.24)

We now have 1
2d(d− 1) number of θ and same amount of ϕ, contributing a total

number of d(d− 1) independent variables for U . Together with the (d− 1) param-

eters in matrix D, we fulfill the demand of (d2 − 1) independent parameters for

our density matrix ρ.

For the θ, ϕ variables, the elements of Jacobian matrix are given by{
∂p

∂φ

}
ij
≡ ∂pi
∂φj

= 2 Re
{

Tr
{
∂U

∂φj
DU †Πi

}}
(2.25)

where φ = {θ1, θ2, . . . , θ 1
2
d(d−1), ϕ1, ϕ2, . . . , ϕ 1

2
d(d−1)}.

On the other hand, Jacobian elements for α variables are{
∂p

∂α

}
ij
≡ ∂pi
∂αj

= Tr
{
U
∂D

∂αj
U †Πi

}
(2.26)

The Jacobian matrix may seem to be a bit more complicated than that in Cholesky

decomposition, as three types of variables are to be dealt with instead of two.

However, it is much easier to realise in actual practice, due to the fact that matrix

U is the product of a series of matrices with independent variables for their own.

For instance, to compute ∂U
∂φk

, we only need to replace matrix Uk with its derivative
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∂Uk

∂φk
, leaving all the rest in the product unchanged, i.e.,

∂U

∂φk
= U1U2· · ·Uk−1

∂Uk
∂φk

Uk+1· · ·Ud−1 (2.27)

This process is further simplified as a consequence of our way of defining the el-

ementary unitary transformation. Taking a closer look of U (i,j)(θ, ϕ) from Equa-

tions 2.23, we have

U (i,j)(θ, ϕ) =



i-th j-th
...

...

i-th · · · cos θ · · · eiϕ sin θ · · ·
...

...

j-th · · · −e−iϕ sin θ · · · cos θ · · ·
...

...

 (2.28)

That is, only four terms are involved when taking derivatives with respect to

θ and ϕ, while the remaining entries are simply 0 or 1. Similarly, this ease of

implementation extends to the second order derivatives as well.

2.2.1 Example: Single qubit, d = 2

Similar to Example 2.1.1, the single qubit spectral decomposition is the most

fundamental and trivial. Density matrix ρ is decomposed into

ρ = U1DU
†
1 (2.29)

where

U1 = U (1,2) =

(
cos θ eiϕ sin θ

−e−iϕ sin θ cos θ

)
, D =

(
cos2 α 0

0 sin2 α

)
(2.30)

Using Pauli matrices as POMs, the Jacobian determinant is found to be

csc (2α) sin2 (4α) sin (2θ) (2.31)

The gradient of potential energy is therefore given by

u(α) = −2 cot (2α) + 8 cot (4α)

u(θ) = 2 cot (2θ)

u(ϕ) = 0

(2.32)

The HMC algorithm can now be executed accordingly.



Chapter 3

Applications

3.1 Preliminary

3.1.1 POM

Pauli matrices are used as POMs in previous examples for illustration purposes.

When generating the samples studied in this chapter, we use tetrahedron measurements[4]

instead, which are symmetric and informationally complete (SIC). For a single

qubit, they are given by

Π1 =
1

4

(
1 +

√
1

3
σx +

√
2

3
σy

)
Π2 =

1

4

(
1 +

√
1

3
σx −

√
2

3
σy

)
Π3 =

1

4

(
1−
√

1

3
σx −

√
2

3
σz

)
Π4 =

1

4

(
1−
√

1

3
σx +

√
2

3
σz

)
(3.1)

For multiple qubits, their tensor products are used as POMs.

3.1.2 Prior Density

Other than the flexibility of choosing different POMs, we can also perform sam-

pling subject to different prior densities. In the following examples, we use three

types of prior density w0(p). In primitive prior, the density is uniformly distributed

13
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in p, i.e.,

wprimitive(p) = 1 (3.2)

Another choice is the Jeffreys prior, which is

wJeffreys(p) =
1

√
p1p2· · · pK

(3.3)

Finally we have the hedged prior, given by

whedged(p) =
√
p1p2· · · pK (3.4)

3.2 Purity

For a quantum state ρ, its purity ξ(ρ) is a scalar quantity given by

ξ(ρ) ≡ Tr(ρ2) (3.5)

If we randomly pick up a 2-qubit state, what is the probability for it to have a

certain purity value? And, for a 2-qubit state with certain purity value, what are

the chances that it is separable?

To answer such questions, we first use HMC to randomly choose 1 million two-qubit

states, using Cholesky decomposition and with respect to primitive prior. For each

one of these sample states, its purity and separability[5] are then evaluated. The

final results are shown below. It is seen clearly in Figure 3.1B that if ξ(ρ) < 1/3,

then ρ is separable[6]. Here we successfully reproduce the same results as in [2],

with a larger sample size.

(A) (B)

Figure 3.1: Sample of 1 million quantum states generated by Cholesky decomposition
with respect to primitive prior density. (A) Prior density of quantum states with respect
to purity. (B) Probability of separation as a function of purity.
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3.3 Fidelity and Distance

Given two density matrices ρ1 and ρ2, their fidelity F is given by

F (ρ1, ρ2) = Tr
{√√

ρ1ρ2
√
ρ1

}
(3.6)

On the other hand, we define their trace distance D as

D(ρ1, ρ2) =
1

2
Tr
{√

(ρ1 − ρ2)†(ρ1 − ρ2)
}

(3.7)

And they satisfy the following inequalities[7],

1− F (ρ1, ρ2) ≤ D(ρ1, ρ2) ≤
√

1− F (ρ1, ρ2)2 (3.8)

In this section, we first generate sample data with Cholesky decomposition method,

based on certain prior density as introduced in Section 3.1.2. Two density matrices

are then selected uniformly out of the sample, and their fidelity F as well as trace

distance D are computed thereafter. MATLAB R© code is attached in Appendix

A.4.

For primitive prior, we have the following results.

(A) (B)
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(C) (D)

Figure 3.2: 1 million sample two-qubit states with Cholesky decomposition and prim-
itive prior density. Figure (A) and Figure (B) show the probability distribution of their
fidelity and distance respectively. A 3-d histogram is shown in Figure (C). Figure (D)
plots the fidelity and distance values for each sample state. The shape in (D) is nicely
bounded by a unit radius circle.

It is clearly seen in Figure 3.2D that all data points lie within a circle with unit

radius, and Fidelity F is above the straight line (−D + 1). Both observations

consist with the inequalities of Equation 3.8.

Similar observations can be made with Jeffreys prior (Figure 3.3D) and hedged

prior (Figure 3.4D) as well, since the inequalities 3.8 are general results regardless

of the choice of prior density.
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(A) (B)

(C) (D)

Figure 3.3: 1 million sample two-qubit states with Cholesky decomposition and Jef-
freys prior. (A) and (B) show the probability distribution of fidelity and distance re-
spectively. (C) is the 3-d histogram and (D) is the scatter plot for fidelity and distance
values of each sample state.
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(A) (B)

(C) (D)

Figure 3.4: 1 million sample two-qubit states with Cholesky decomposition and
hedged prior. (A) and (B) show the probability distribution of fidelity and distance re-
spectively. (C) is the 3-d histogram and (D) is the scatter plot for fidelity and distance
values of each sample state.



Chapter 4

Conclusion and Outlook

The main outcomes of this project are the MATLAB R© code listed in Appendix A,

which computes numerically the density matrix ρ, Jacobian determinant |∂p∂θ |, and

gradients us(θ), for a given set of POM and angle variables used in Cholesky or

spectral decomposition, with respect to any target prior density. Together with the

HMC algorithm developed in [3], the code performs efficiently enough to generate

1 million random two-qubit states within around 10 ˜ 11 hours.

In Chapter 1, we first introduced the concepts of size SR and credibility cR as in

Equations 1.7 and 1.11, which served as motivations of developing HMC algorithm

in order to estimate numerically the (d2−1)-dimensional integral. Then we directly

wrote out the HMC algorithm as shown in Section 1.3.2. Its formal and detailed

introduction can be found in [3].

Two possible decomposition methods for the density matrix ρ, namely the Cholesky

Decomposition and Spectral Decomposition, were discussed in Chapter 2. In

Cholesky Decomposition, density matrix ρ is decomposed into the product of

an upper-triangular matrix A with its Hermitian conjugate, i.e., ρ = A†A, and

each element of matrix A is a function of (d2 − 1) independent angle variables

{θ1, θ2, . . . , θd2−1}. The main challenge was to compute the first order and second

order derivatives of A with respect to each one of these variables, as required in

Equations 2.9 and 2.12. This part of MATLAB R© code is attached in Appendix

A.1 and A.2.

In contrast to Cholesky Decomposition, where one matrix A consists of all the

independent variables, making evaluating its derivatives rather difficult, Spectral

Decomposition has the nice properties of defining and assigning each individual

variable into its own matrix. By replacing the elementary matrix with its deriva-

tive, the overall derivative and thus the Jocabian matrix can be easily computed,

19
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as illustrated in Equation 2.27. An example of performing Spectral Decomposition

with primitive prior is listed in Appendix A.3.

In Chapter 3, we studied some properties of the sample generated by the program.

The probability distribution of purity, fidelity or distance of two-qubit states could

be obtained with ease. It is also possible to analyze some other quantities such as

the separation probability, relations between fidelity and distance, etc.

Although our MATLAB R© program was written in such a manner as to compute

numerically for any dimension, we were sampling in the 15-dimensional two-qubit

state space throughout this thesis. For higher dimensional situations, qualitatively

speaking, there will be too many cosine and sine functions of independent angle

variables multiplied together, which may result in numbers that are too small for

MATLAB R© to handle properly. Hence further improvements need to be made for

63-dimensional three-qubit state space as well as even higher dimensional prob-

lems.



Appendix A

MATLAB code for two-qubit

states

A.1 Cholesky Decomposition with Primitive Prior

1 % input angle variables q, matrix dimension d, and POM Q

2 % output matrix A used in Cholesky Decomposition , Jacobian determinant JacDet ,

and potential gradients u

3 % no need to output probabilities prob , which are all 1 in primitive prior

4

5 function [A, JacDet , u] = cholesky_2qb_flat(q,d,Q)

6

7 % d=4;

8 nt=d*(d+1)/2-1; % theta=9

9 nf=d*(d-1)/2; % phi=6

10 num=d^2-1;

11 % num=nt+nf=d^2 -1=15

12

13 % indices that will be used repeatedly

14 ind = [d*nt,d*nf,nt+nf ,d*(nt+nf),nt*nf,d*nt*nf,nt*(1+nt)/2,d*nt*(1+nt)/2];

15

16 % index matrices: indM1 , indM2 , and so on.

17 indM1 = tril(ones(d));

18 indM2 = tril(ones(d) ,-1);

19

20 % indM3 , indM4 and indM5 are used to compute partial traces

21 indM3 = reshape(reshape(bsxfun(@plus ,(0:d^2-2)*(d^4-d^2),reshape(bsxfun(@plus ,(0:

d-1)*(d^3-d+1) ,(1:d:d^3-d*2+1).’) ,1,d^3-d).’),d^2-1,d^3-d).’,d,(d^2-1)^2);

22 indM4 = reshape(reshape(bsxfun(@plus ,(0:14) *3600, reshape(bsxfun(@plus ,(0:d-1)

*901 ,(1:d:897).’) ,1,900).’) ,225,60).’,4,3375);

23 indM5 = bsxfun(@plus ,(0:14) *225, bsxfun(@plus ,(0:14) *16,1.’).’);

24

25 t=q(1:nt ,1) ’;

26 f=q(nt+1:num ,1) ’;

27

28 sint = sin(t); cost = cos(t); tant = tan(t); cott = cot(t);

21
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29 expfp = exp(1i*f); expfm = exp(-1i*f);

30

31 % Create x, which are |Ajk| and lie on a sphere

32 x_temp = [1,cumprod(sint)].*[cost ,1];

33 temp = ones(d);

34 temp(indM2 == 1) = temp(indM2 == 1) ’.*expfm;

35 x = x_temp ’.* nonzeros(tril(temp));

36

37 % cA is complex conjugate transpose of matrix A

38 % Create cA using complex conjugate of x

39 cA = zeros(d);

40 cA(indM1 == 1) = conj(x);

41 % Create matrix A

42 % density matrix rho = A’*A = cA*A

43 A = cA ’;

44

45 % derivative of x wrt theta

46 dxdt_temp = (x(2:nt+1)*cott).’;

47 dxdt_temp(tril(true(nt) ,-1)==1) = 0;

48 dxdt = [zeros(nt ,1),dxdt_temp ];

49 temp = ones(d);

50 temp(indM2 == 1) = temp(indM2 == 1) ’.*expfm;

51 temp = temp(indM1 ==1);

52 dxdt(logical(eye(nt))) = -cumprod(sint) ’.*temp (1:nt);

53

54 % derivative of matrix A wrt theta

55 % Create dAdt using transpose of dxdt

56 dAdt = zeros(d,ind(1));

57 dAdt(repmat(indM1 ,1,nt) == 1) = dxdt.’;

58 dAdt = dAdt.’;

59

60 % here dxdf_temp is not yet derivative of x wrt phi

61 dxdf_temp = zeros(nt+1);

62 dxdf_temp(eye(nt+1) ==1) = -1i*indM2(tril(true(d)));

63 dxdf_temp (~any(dxdf_temp ,2) ,:) = [];

64

65 % 2nd order derivative of x wrt the same phi

66 ddxdff = -1i*dxdf_temp;

67 ddxdff = bsxfun(@times ,ddxdff ,x.’);

68

69 % 2nd order derivative of A wrt the same phi

70 ddAdff = zeros(d,ind (2));

71 ddAdff(repmat(indM1 ,1,nf) == 1) = ddxdff.’;

72 ddAdff = ddAdff.’;

73

74 % y is 2nd order derivative of x wrt theta and phi

75 y = zeros(ind(5) ,10);

76 for i = 1:9

77 y(6*i -5:1:6*i,:) = y(6*i -5:1:6*i,:) + bsxfun(@times ,dxdf_temp ,dxdt(i,:));

78 end

79

80 % derivative of A wrt theta and phi

81 ddAdfdt = zeros(d,ind(6));

82 ddAdfdt(repmat(indM1 ,1,ind(5)) == 1) = y.’;

83 ddAdfdt = ddAdfdt.’;
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84

85 % derivative of x wrt phi

86 dxdf = bsxfun(@times ,dxdf_temp ,x.’);

87

88 % derivative of matrix A wrt phi

89 % Create dAdt using transpose of dxdf

90 dAdf = zeros(d,ind(2));

91 dAdf(repmat(indM1 ,1,nf) == 1) = dxdf.’;

92 dAdf = dAdf.’;

93

94 % Put dAdt and dAdf together to form dAdm

95 dAdm = [dAdt;dAdf];

96 dAdm = reshape(permute(reshape(dAdm.’,d,d,ind(3)) ,[2,1,3]),d,ind(4));

97

98 % Pre -multiply dAdm with cA and get cAdAdm

99 cAdAdm = cA*dAdm;

100 cAdAdm = reshape(permute(reshape(cAdAdm ,d,d,ind(3)) ,[1,3,2]),ind(4),d);

101

102 % Multiply cAdAdm with POMs

103 dpdm_temp = cAdAdm*Q(: ,1:60);

104

105 % Take partial traces and their real part , then times 2 to get Jacobian dpdm

106 dpdm = reshape (2* real(sum(dpdm_temp(indM3))),d^2-1,d^2-1);

107

108 % determinant of Jacobian matrix dpdm

109 JacDet = det(dpdm);

110

111 % z is 2nd order derivative of x wrt theta

112 z = zeros(ind(7) ,10);

113 for i = 1:8

114 temp1 = cott(i)*triu(ones(9-i,10),i+1);

115 temp1 = times(temp1 ,repmat(cott(i+1:9).’,1,10));

116

117 temp2 = zeros(9-i,10);

118 temp2(i*(9-i)+1:10-i:numel(temp2)) = ones(1,9-i); % = cott (2)*tant (3:9)

119 temp2 = times(temp2 ,repmat(-tant(i+1:9).’,1,10));

120 temp2 = cott(i)*temp2;

121

122 z(-i^2/2+21*i/2-8:1:-i^2/2+19*i/2,:) = z(-i^2/2+21*i/2-8:1:-i^2/2+19*i/2,:)+

temp1+temp2;

123 end

124 z = repmat(x.’,ind(7) ,1).*z;

125

126 z2 = -1*triu(ones (9,10));

127 z2 = repmat(x.’,9,1).*z2;

128

129 z(~any(z,2) ,:) = z2;

130

131 % 2nd order derivative of matrix A wrt theta

132 % Create dAdtdt using transpose of z

133 ddAdtdt = zeros(d,ind(8));

134 ddAdtdt(repmat(indM1 ,1,ind(7)) == 1) = z.’;

135 ddAdtdt = ddAdtdt.’;

136

137 % % Put ddAdtdt , ddAdfdt and ddAdff together to form ddAdmdm



Appendix A. MATLAB Code 24

138 % ddAdmdm = [ddAdtdt;ddAdfdt;ddAdff ];

139 % ddAdmdm = reshape(permute(reshape(ddAdmdm.’,d,d,105) ,[2,1,3]),d,d*105);

140 % % Pre -multiply ddAdmdm with cA and get cddAdmdm

141 % cddAdmdm = cA*ddAdmdm;

142

143 % cA*ddAdtdt

144 cddAdtdt = cA*reshape(permute(reshape(ddAdtdt.’,d,d,ind (7)) ,[2,1,3]),d,ind (8));

145 a1Cell = mat2cell(cddAdtdt ,d,d*(9: -1:1));

146 A1 = zeros (36);

147 for i = 1:9

148 A1(d*i-3:1:d*i,:) = A1(d*i-3:1:d*i,:) + [repmat(zeros(d) ,1,i-1),a1Cell{i}];

149 end

150

151 cddAdtdt_permute = reshape(permute(reshape(cddAdtdt ,d,d,ind(7)) ,[1,3,2]),ind (8),d

);

152 a2Cell = mat2cell(cddAdtdt_permute ,d*(9: -1:1),d);

153 A2 = zeros (36);

154 for i = 1:9

155 A2(:,d*i-3:1:d*i) = A2(:,d*i-3:1:d*i) + [repmat(zeros(d),i-1,1);a2Cell{i}];

156 end

157

158 a3Cell = cell(1,nt);

159 for i = 1:9

160 a3Cell{i} = a2Cell{i}(1:d,1:d);

161 end

162 A3 = blkdiag(a3Cell {:});

163

164 sumA = A1+A2-A3;

165

166 % cA*ddAdfdt

167 cddAdfdt = cA*reshape(permute(reshape(ddAdfdt.’,d,d,ind (5)) ,[2,1,3]),d,ind (6));

168 bCell = mat2cell(cddAdfdt ,d,ind(2)*ones(1,nt));

169 cddAdfdt_permute = reshape(permute(reshape(cddAdfdt ,d,d,ind(5)) ,[1,3,2]),ind (6),d

);

170 cCell = mat2cell(cddAdfdt_permute ,ind (2)*ones(1,nt),d);

171 B = zeros(ind(1),ind(2));C = zeros(ind(2),ind(1));

172 for i = 1:9

173 B(d*i-d+1:1:4*i,:) = B(d*i-d+1:1:d*i,:) + bCell{i};

174 C(:,d*i-d+1:1:4*i) = C(:,d*i-d+1:1:d*i) + cCell{i};

175 end

176

177 % cA*ddAdff

178 cddAdff = cA*reshape(permute(reshape(ddAdff.’,d,d,nf) ,[2,1,3]),d,ind(2));

179 dCell = mat2cell(cddAdff ,d,d*ones(1,nf));

180 D = blkdiag(dCell {:});

181

182 % combine sumA B C D in the following way and add to dAdm ’ * dAdm;

183 % | sumA B |

184 % | C D |

185 mat_1 = [sumA ,B;C,D] + dAdm ’*dAdm; % a 60-by -60 matrix

186 mat_2 = cell2mat(mat2cell(mat_1 ,ind(4),d*ones(1,ind (3))).’); % 900-by -4

187 mat_3 = mat_2*Q(: ,1:60); % multiply mat_2 with POMs; 900-by -60

188

189 % Take partial traces of mat_3 and their real part , then times 2

190 mat_4 = reshape (2* real(sum(mat_3(indM4))),ind(3),ind(3) ^2);
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191

192 inv_dpdm = eye(d^2-1)/dpdm; % inv_dpdm = inv(dpdm);

193

194 mat_5 = inv_dpdm*mat_4;

195

196 % Partial traces of mat_5 yields the gradients

197 u = sum(mat_5(indM5));

198 u(nt+1:nt+nf) = zeros(1,nf);
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A.2 Cholesky Decomposition with Jeffreys Prior or Hedged

Prior

1 % input angle variables q, matrix dimension d, and POM Q

2 % output matrix A used in Cholesky Decomposition , probabilities prob , Jacobian

determinant JacDet , and potential gradients u.

3

4 function [A, prob , JacDet , u] = cholesky_2qb_non_flat(q,d,Q)

5

6 % d=4;

7 nt=d*(d+1)/2-1; % theta=9

8 nf=d*(d-1)/2; % phi=6

9 num=d^2-1;

10 % num=nt+nf=d^2 -1=15

11

12 % indices that will be used repeatedly

13 ind = [d*nt,d*nf ,nt+nf ,d*(nt+nf),nt*nf,d*nt*nf,nt*(1+nt)/2,d*nt*(1+nt)/2];

14

15 % index matrices: indM1 , indM2 , and so on.

16 indM1 = tril(ones(d));

17 indM2 = tril(ones(d) ,-1);

18

19 % indM3 , indM4 , indM5 and indM6 are used to compute partial traces

20 indM3 = reshape(reshape(bsxfun(@plus ,(0:d^2-2)*(d^4-d^2),reshape(bsxfun(@plus ,(0:

d-1)*(d^3-d+1) ,(1:d:d^3-d*2+1).’) ,1,d^3-d).’),d^2-1,d^3-d).’,d,(d^2-1)^2);

21 indM4 = reshape(reshape(bsxfun(@plus ,(0:14) *3600, reshape(bsxfun(@plus ,(0:d-1)

*901 ,(1:d:897).’) ,1,900).’) ,225,60).’,4,3375);

22 indM5 = bsxfun(@plus ,(0:14) *225, bsxfun(@plus ,(0:14) *16,1.’).’);

23 indM6 = bsxfun(@plus ,(0:14) *16, bsxfun(@plus ,(0:3) *5,1.’).’);

24

25 t=q(1:nt ,1) ’;

26 f=q(nt+1:num ,1) ’;

27

28 sint = sin(t); cost = cos(t); tant = tan(t); cott = cot(t);

29 expfp = exp(1i*f); expfm = exp(-1i*f);

30

31 % Create x, which are |Ajk| and lie on a sphere

32 x_temp = [1,cumprod(sint)].*[cost ,1];

33 temp = ones(d);

34 temp(indM2 == 1) = temp(indM2 == 1) ’.*expfm;

35 x = x_temp ’.* nonzeros(tril(temp));

36

37 % cA is complex conjugate transpose of matrix A

38 % Create cA using complex conjugate of x

39 cA = zeros(d);

40 cA(indM1 == 1) = conj(x);

41 % Create matrix A

42 A = cA ’;

43 % density matrix rho

44 rho = cA*A;

45 % probabilities

46 prob = rho*Q(: ,1:60);

47 prob = sum(prob(indM6));

48
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49 % derivative of x wrt theta

50 dxdt_temp = (x(2:nt+1)*cott).’;

51 dxdt_temp(tril(true(nt) ,-1)==1) = 0;

52 dxdt = [zeros(nt ,1),dxdt_temp ];

53 temp = ones(d);

54 temp(indM2 == 1) = temp(indM2 == 1) ’.*expfm;

55 temp = temp(indM1 ==1);

56 dxdt(logical(eye(nt))) = -cumprod(sint) ’.*temp (1:nt);

57

58 % derivative of matrix A wrt theta

59 % Create dAdt using transpose of dxdt

60 dAdt = zeros(d,ind(1));

61 dAdt(repmat(indM1 ,1,nt) == 1) = dxdt.’;

62 dAdt = dAdt.’;

63

64 % here dxdf_temp is not yet derivative of x wrt phi

65 dxdf_temp = zeros(nt+1);

66 dxdf_temp(eye(nt+1) ==1) = -1i*indM2(tril(true(d)));

67 dxdf_temp (~any(dxdf_temp ,2) ,:) = [];

68

69 % 2nd order derivative of x wrt the same phi

70 ddxdff = -1i*dxdf_temp;

71 ddxdff = bsxfun(@times ,ddxdff ,x.’);

72

73 % 2nd order derivative of A wrt the same phi

74 ddAdff = zeros(d,ind (2));

75 ddAdff(repmat(indM1 ,1,nf) == 1) = ddxdff.’;

76 ddAdff = ddAdff.’;

77

78 % y is 2nd order derivative of x wrt theta and phi

79 y = zeros(ind(5) ,10);

80 for i = 1:9

81 y(6*i -5:1:6*i,:) = y(6*i -5:1:6*i,:) + bsxfun(@times ,dxdf_temp ,dxdt(i,:));

82 end

83

84 % derivative of A wrt theta and phi

85 ddAdfdt = zeros(d,ind(6));

86 ddAdfdt(repmat(indM1 ,1,ind(5)) == 1) = y.’;

87 ddAdfdt = ddAdfdt.’;

88

89 % derivative of x wrt phi

90 dxdf = bsxfun(@times ,dxdf_temp ,x.’);

91

92 % derivative of matrix A wrt phi

93 % Create dAdt using transpose of dxdf

94 dAdf = zeros(d,ind(2));

95 dAdf(repmat(indM1 ,1,nf) == 1) = dxdf.’;

96 dAdf = dAdf.’;

97

98 % Put dAdt and dAdf together to form dAdm

99 dAdm = [dAdt;dAdf];

100 dAdm = reshape(permute(reshape(dAdm.’,d,d,ind(3)) ,[2,1,3]),d,ind(4));

101

102 % Pre -multiply dAdm with cA and get cAdAdm

103 cAdAdm = cA*dAdm;
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104 cAdAdm = reshape(permute(reshape(cAdAdm ,d,d,ind(3)) ,[1,3,2]),ind(4),d);

105

106 % Multiply cAdAdm with POMs

107 dpdm_temp = cAdAdm*Q(: ,1:60);

108

109 % Take partial traces and their real part , then times 2 to get Jacobian dpdm

110 dpdm = reshape (2* real(sum(dpdm_temp(indM3))),d^2-1,d^2-1);

111

112 % determinant of Jacobian matrix dpdm

113 JacDet = det(dpdm);

114

115 % z is 2nd order derivative of x wrt theta

116 z = zeros(ind(7) ,10);

117 for i = 1:8

118 temp1 = cott(i)*triu(ones(9-i,10),i+1);

119 temp1 = times(temp1 ,repmat(cott(i+1:9).’,1,10));

120

121 temp2 = zeros(9-i,10);

122 temp2(i*(9-i)+1:10-i:numel(temp2)) = ones(1,9-i); % = cott (2)*tant (3:9)

123 temp2 = times(temp2 ,repmat(-tant(i+1:9).’,1,10));

124 temp2 = cott(i)*temp2;

125

126 z(-i^2/2+21*i/2-8:1:-i^2/2+19*i/2,:) = z(-i^2/2+21*i/2-8:1:-i^2/2+19*i/2,:)+

temp1+temp2;

127 end

128 z = repmat(x.’,ind(7) ,1).*z;

129

130 z2 = -1*triu(ones (9,10));

131 z2 = repmat(x.’,9,1).*z2;

132

133 z(~any(z,2) ,:) = z2;

134

135 % 2nd order derivative of matrix A wrt theta

136 % Create dAdtdt using transpose of z

137 ddAdtdt = zeros(d,ind(8));

138 ddAdtdt(repmat(indM1 ,1,ind(7)) == 1) = z.’;

139 ddAdtdt = ddAdtdt.’;

140

141 % % Put ddAdtdt , ddAdfdt and ddAdff together to form ddAdmdm

142 % ddAdmdm = [ddAdtdt;ddAdfdt;ddAdff ];

143 % ddAdmdm = reshape(permute(reshape(ddAdmdm.’,d,d ,105) ,[2,1,3]),d,d*105);

144 % % Pre -multiply ddAdmdm with cA and get cddAdmdm

145 % cddAdmdm = cA*ddAdmdm;

146

147 % cA*ddAdtdt

148 cddAdtdt = cA*reshape(permute(reshape(ddAdtdt.’,d,d,ind (7)) ,[2,1,3]),d,ind (8));

149 a1Cell = mat2cell(cddAdtdt ,d,d*(9: -1:1));

150 A1 = zeros (36);

151 for i = 1:9

152 A1(d*i-3:1:d*i,:) = A1(d*i-3:1:d*i,:) + [repmat(zeros(d) ,1,i-1),a1Cell{i}];

153 end

154

155 cddAdtdt_permute = reshape(permute(reshape(cddAdtdt ,d,d,ind(7)) ,[1,3,2]),ind (8),d

);

156 a2Cell = mat2cell(cddAdtdt_permute ,d*(9: -1:1),d);
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157 A2 = zeros (36);

158 for i = 1:9

159 A2(:,d*i-3:1:d*i) = A2(:,d*i-3:1:d*i) + [repmat(zeros(d),i-1,1);a2Cell{i}];

160 end

161

162 a3Cell = cell(1,nt);

163 for i = 1:9

164 a3Cell{i} = a2Cell{i}(1:d,1:d);

165 end

166 A3 = blkdiag(a3Cell {:});

167

168 sumA = A1+A2-A3;

169

170 % cA*ddAdfdt

171 cddAdfdt = cA*reshape(permute(reshape(ddAdfdt.’,d,d,ind (5)) ,[2,1,3]),d,ind (6));

172 bCell = mat2cell(cddAdfdt ,d,ind(2)*ones(1,nt));

173 cddAdfdt_permute = reshape(permute(reshape(cddAdfdt ,d,d,ind(5)) ,[1,3,2]),ind (6),d

);

174 cCell = mat2cell(cddAdfdt_permute ,ind (2)*ones(1,nt),d);

175 B = zeros(ind(1),ind(2));C = zeros(ind(2),ind(1));

176 for i = 1:9

177 B(d*i-d+1:1:4*i,:) = B(d*i-d+1:1:d*i,:) + bCell{i};

178 C(:,d*i-d+1:1:4*i) = C(:,d*i-d+1:1:d*i) + cCell{i};

179 end

180

181 % cA*ddAdff

182 cddAdff = cA*reshape(permute(reshape(ddAdff.’,d,d,nf) ,[2,1,3]),d,ind(2));

183 dCell = mat2cell(cddAdff ,d,d*ones(1,nf));

184 D = blkdiag(dCell {:});

185

186 % combine sumA B C D in the following way and add to dAdm ’ * dAdm;

187 % | sumA B |

188 % | C D |

189 mat_1 = [sumA ,B;C,D] + dAdm ’*dAdm; % a 60-by -60 matrix

190 mat_2 = cell2mat(mat2cell(mat_1 ,ind(4),d*ones(1,ind (3))).’); % 900-by -4

191 mat_3 = mat_2*Q(: ,1:60); % multiply mat_2 with POMs; 900-by -60

192

193 % Take partial traces of mat_3 and their real part , then times 2

194 mat_4 = reshape (2* real(sum(mat_3(indM4))),ind(3),ind(3) ^2);

195

196 inv_dpdm = eye(d^2-1)/dpdm; % inv_dpdm = inv(dpdm);

197

198 mat_5 = inv_dpdm*mat_4;

199

200 % Partial traces of mat_5 yields the gradients

201 u = sum(mat_5(indM5));

202 u(nt+1:nt+nf) = zeros(1,nf);



Appendix A. MATLAB Code 30

A.3 Spectral Decomposition with Primitive Prior

1 % input angle variables q, matrix dimension d, and POM Q

2 % output matrix U, matrix D used in Spectral Decomposition , Jacobian determinant

JacDet , and potential gradients u

3 % no need to output probabilities prob , which are all 1 in primitive prior

4

5 function [U, D, JacDet , u] = spect_2qb_flat(q,d,Q)

6

7 % d=4;

8 nft = d*(d-1)/2; % number of theta and phi are the same

9 na = d-1; % number of alpha

10 num = d^2-1;

11 % num=nft+nft+na=d^2 -1=15

12

13 t = q(1:nft ,1) ’;

14 f = q(nft+1: nft+nft ,1) ’;

15 a = q(nft+nft+1:num ,1) ’;

16

17 sint = sin(t); cost = cos(t);

18 tant = tan(t); cott = cot(t);

19 expfp = exp(1i*f); expfm = exp(-1i*f);

20 sina = sin(a); cosa = cos(a);

21 tana = tan(a); cota = cot(a);

22

23 % j,k indices for theta , phi and matrix E

24 ind = zeros(nft ,2);

25 temp = 1;

26 for j = 1:d-1

27 for k = (j+1):d

28 ind(temp ,:)=[j,k];

29 temp=temp +1;

30 end

31 end

32

33 E = zeros(d,d,nft); % E_i is a matrix of theta_i and phi_i

34 dEdt = zeros(d,d,nft); % 1st order derivative of E_i wrt theta_i

35 dEdf = zeros(d,d,nft); % 1st order derivative of E_i wrt phi_i

36 d2Edtt = zeros(d,d,nft); % 2nd order derivative of E_i wrt theta_i

37 d2Edft = zeros(d,d,nft); % 2nd order derivative of E_i wrt theta_i and phi_i

38 d2Edff = zeros(d,d,nft); % 2nd order derivative of E_i wrt phi_i

39 for i = 1:nft

40 % E_i is a matrix of theta_i and phi_i

41 E(:,:,i) = eye(d);

42 E(ind(i,1),ind(i,1),i) = cost(i);

43 E(ind(i,2),ind(i,2),i) = cost(i);

44 E(ind(i,1),ind(i,2),i) = expfp(i)*sint(i);

45 E(ind(i,2),ind(i,1),i) = -expfm(i)*sint(i);

46

47 % 1st order derivative of E_i wrt theta_i

48 dEdt(ind(i,1),ind(i,1),i) = -sint(i);

49 dEdt(ind(i,2),ind(i,2),i) = -sint(i);

50 dEdt(ind(i,1),ind(i,2),i) = expfp(i)*cost(i);

51 dEdt(ind(i,2),ind(i,1),i) = -expfm(i)*cost(i);

52
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53 % 1st order derivative of E_i wrt phi_i

54 dEdf(ind(i,1),ind(i,2),i) = 1i*E(ind(i,1),ind(i,2),i);

55 dEdf(ind(i,2),ind(i,1),i) = -1i*E(ind(i,2),ind(i,1),i);

56

57 % 2nd order derivative of E_i wrt theta_i

58 d2Edtt(ind(i,1),ind(i,1),i) = -E(ind(i,1),ind(i,1),i);

59 d2Edtt(ind(i,2),ind(i,2),i) = -E(ind(i,2),ind(i,2),i);

60 d2Edtt(ind(i,1),ind(i,2),i) = -E(ind(i,1),ind(i,2),i);

61 d2Edtt(ind(i,2),ind(i,1),i) = - E(ind(i,2),ind(i,1),i);

62

63 % 2nd order derivative of E_i wrt theta_i and phi_i

64 d2Edft(ind(i,1),ind(i,2),i) = 1i*dEdt(ind(i,1),ind(i,2),i);

65 d2Edft(ind(i,2),ind(i,1),i) = -1i*dEdt(ind(i,2),ind(i,1),i);

66

67 % 2nd order derivative of E_i wrt phi_i

68 d2Edff(ind(i,1),ind(i,2),i) = -E(ind(i,1),ind(i,2),i);

69 d2Edff(ind(i,2),ind(i,1),i) = -E(ind(i,2),ind(i,1),i);

70 end

71

72 % Product of matrices E

73 % U = E_1 * E_2 * E_3 * E_4 * ... * E_nft

74 U = eye(d);

75 for i = 1:nft

76 U = U*E(:,:,i);

77 end

78 cU = ctranspose(U);

79

80 dUdm = zeros(d,d,nft+nft); % 1st order derivative of U wrt theta and phi

81 cdUdm = zeros(d,d,nft+nft);

82 for i = 1:nft

83 dUdm(:,:,i) = eye(d);

84 for j = 1:i-1

85 dUdm(:,:,i) = dUdm(:,:,i)*E(:,:,j);

86 end

87 dUdm(:,:,i+nft) = dUdm(:,:,i)*dEdf(:,:,i); % wrt phi

88 dUdm(:,:,i) = dUdm(:,:,i)*dEdt(:,:,i); % wrt theta

89 for j = i+1:nft

90 dUdm(:,:,i) = dUdm(:,:,i)*E(:,:,j); % wrt theta

91 dUdm(:,:,i+nft) = dUdm(:,:,i+nft)*E(:,:,j); % wrt phi

92 end

93 cdUdm(:,:,i) = ctranspose(dUdm(:,:,i));

94 cdUdm(:,:,i+nft) = ctranspose(dUdm(:,:,i+nft));

95 end

96

97 d2Udmm = zeros(d,d,nft+nft ,nft+nft); % 2nd order derivative wrt theta and phi

98 for i = 1:nft

99 d2Udmm(:,:,i,i) = eye(d); % 2nd order derivative of U wrt same theta

100 for j = 1:i-1

101 d2Udmm(:,:,i,i) = d2Udmm(:,:,i,i)*E(:,:,j);

102 d2Udmm(:,:,j,i) = eye(d);

103 d2Udmm(:,:,j,i+nft) = eye(d);

104 d2Udmm(:,:,j+nft ,i+nft) = eye(d);

105 for k = 1:j-1

106 d2Udmm(:,:,j,i) = d2Udmm(:,:,j,i)*E(:,:,k);

107 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*E(:,:,k);
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108 d2Udmm(:,:,j+nft ,i+nft) = d2Udmm(:,:,j+nft ,i+nft)*E(:,:,k);

109 end

110 d2Udmm(:,:,j,i) = d2Udmm(:,:,j,i)*dEdt(:,:,j);

111 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*dEdt(:,:,j);

112 d2Udmm(:,:,j+nft ,i+nft) = d2Udmm(:,:,j+nft ,i+nft)*dEdf(:,:,j);

113 for k = j+1:i-1

114 d2Udmm(:,:,j,i) = d2Udmm(:,:,j,i)*E(:,:,k);

115 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*E(:,:,k);

116 d2Udmm(:,:,j+nft ,i+nft) = d2Udmm(:,:,j+nft ,i+nft)*E(:,:,k);

117 end

118 d2Udmm(:,:,j,i) = d2Udmm(:,:,j,i)*dEdt(:,:,i);

119 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*dEdf(:,:,i);

120 d2Udmm(:,:,j+nft ,i+nft) = d2Udmm(:,:,j+nft ,i+nft)*dEdf(:,:,i);

121 for k = i+1:nft

122 d2Udmm(:,:,j,i) = d2Udmm(:,:,j,i)*E(:,:,k);

123 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*E(:,:,k);

124 d2Udmm(:,:,j+nft ,i+nft) = d2Udmm(:,:,j+nft ,i+nft)*E(:,:,k);

125 end

126 end

127

128 d2Udmm(:,:,i+nft ,i+nft) = d2Udmm(:,:,i,i)*d2Edff(:,:,i); % wrt same phi

129 d2Udmm(:,:,i,i+nft) = d2Udmm(:,:,i,i)*d2Edft(:,:,i); % wrt theta and phi of

same index

130 d2Udmm(:,:,i,i) = d2Udmm(:,:,i,i)*d2Edtt(:,:,i); % wrt same theta

131

132 for j = i+1:nft

133 d2Udmm(:,:,j,i+nft) = eye(d);

134 for k = 1:i-1

135 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*E(:,:,k);

136 end

137 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*dEdf(:,:,i);

138 for k = i+1:j-1

139 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*E(:,:,k);

140 end

141 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*dEdt(:,:,j);

142 for k = j+1:nft

143 d2Udmm(:,:,j,i+nft) = d2Udmm(:,:,j,i+nft)*E(:,:,k);

144 end

145 d2Udmm(:,:,i,i) = d2Udmm(:,:,i,i)*E(:,:,j); % wrt same theta

146 d2Udmm(:,:,i,i+nft) = d2Udmm(:,:,i,i+nft)*E(:,:,j); % wrt theta and phi

of same index

147 d2Udmm(:,:,i+nft ,i+nft) = d2Udmm(:,:,i+nft ,i+nft)*E(:,:,j); % wrt same

phi

148 end

149 end

150

151 % matrix of alpha

152 % off diagonal elements are zero

153 D = zeros(d,d);

154 for i = 1:d-1

155 D(i,i) = (cosa(i))^2;

156 for j = 1:i-1

157 D(i,i) = D(i,i)*(sina(j))^2;

158 end

159 end
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160 D(d,d) = D(d-1,d-1)*(tana(d-1))^2;

161

162 rho = cU*D*U;

163

164 dDda = zeros(d,d,na); % 1st order derivative of D wrt alpha

165 d2Ddaa = zeros(d,d,na,na); % 2nd order derivative of D wrt alpha

166 for i = 1:na

167 dDda(i,i,i) = -2*D(i,i)*tana(i);

168 d2Ddaa(i,i,i,i) = -2*D(i,i)*(1-( tana(i))^2);

169 for j = 1:i-1

170 d2Ddaa(i,i,j,i) = -4*D(i,i)*tana(i)*cota(j);

171 for k = i+1:d

172 d2Ddaa(k,k,j,i) = 4*D(k,k)*cota(i)*cota(j);

173 end

174 end

175 for j = i+1:d

176 dDda(j,j,i) = 2*D(j,j)*cota(i);

177 d2Ddaa(j,j,i,i) = 2*D(j,j)*(( cota(i))^2-1);

178 end

179 end

180

181 jcb = zeros(d^2-1);

182 for i = 1:d^2-1

183 for j = 1:nft+nft % wrt theta and phi

184 jcb(i,j) = 2*real(trace(dUdm(:,:,j)*D*cU*Q(:,:,i)));

185 end

186 for j = 1:na % wrt alpha

187 jcb(i,j+nft+nft) = trace(U*dDda(:,:,j)*cU*Q(:,:,i));

188 end

189 end

190

191 % determinant of Jacobian matrix dpdm

192 JacDet = det(jcb);

193

194 M = zeros(d^2-1,d^2-1,d^2-1);

195 for i = 1:nft+nft % wrt theta and phi

196 for j = 1:d^2-1

197 for k = 1:nft+nft

198 M(j,k,i) = 2*real(trace(( d2Udmm(:,:,min(i,k),max(i,k))*D*cU+dUdm(:,:,

k)*D*cdUdm(:,:,i))*Q(:,:,j)));

199 end

200 for k = 1:na

201 M(j,k+nft+nft ,i) = 2*real(trace(dUdm(:,:,i)*dDda(:,:,k)*cU*Q(:,:,j)))

;

202 end

203 end

204 end

205 for i = 1:na % wrt alpha

206 for j = 1:d^2-1

207 for k = 1:nft+nft

208 M(j,k,i+nft+nft) = M(j,i+nft+nft ,k);

209 end

210 for k = 1:na

211 M(j,k+nft+nft ,i+nft+nft) = trace(U*d2Ddaa(:,:,min(i,k),max(i,k))*cU*Q

(:,:,j));
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212 end

213 end

214 end

215

216 u = zeros(1,d^2-1);

217 inv_jcb = eye(d^2-1)/jcb; % inv_jcb = inv(jcb);

218 for i = 1:d^2-1

219 u(i) = real(trace(inv_jcb*M(:,:,i))); % inverse of jcb * M(:,:,i)

220 end
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A.4 Fidelity and Distance

1 % input data points

2 % output fidelity histogram , distance histogram , and fidelity vs. distance

3

4 clear all

5 close all

6 warning(’off’,’all’);

7

8 % choose one workspace to load based on your prior density

9

10 load(’hmc_AA_2qb_primitive_1m_pts.mat’);

11 % load(’hmc_AA_2qb_Jeffreys_1m_pts.mat ’);

12 % load(’hmc_AA_2qb_hedged_1m_pts.mat ’);

13

14 ln = length(rho);

15 randInd = zeros (1,2);

16 randMat = zeros (4);

17 fdl = zeros(1,ln); % fidelity

18 dist = zeros(1,ln); % distance

19 dx = 100; % number of bins

20 x_axis = 1/dx:1/dx:1; % x axis of distribution plot

21 for i = 1:ln

22 % random number between 1 and length of rho

23 randInd = round (1+(ln -1).*rand (1,2));

24 % randomly choose two matrices and multiply them together

25 randMat = rho(:,:, randInd (1))*rho(:,:, randInd (2));

26

27 randEig = sqrt(eig(randMat)); % square root of eigenvalues

28 fdl(i) = real(sum(randEig)); % sum up to get fidelity

29

30 randMat2 = rho(:,:,randInd (1))-rho(:,:, randInd (2));

31 randMat2 = randMat2 ’* randMat2;

32 dist(i) = trace(sqrtm(randMat2))/2; % trace distance

33 end

34

35 h = figure;

36 [f,x] = hist(fdl ,dx);

37 bar(x_axis ,f/ln); % fidelity distribution

38 axis ([0 ,1 ,0 ,0.04]); xlabel(’Fidelity ’);ylabel(’Prior Density ’);

39 % title([’Fidelity Distribution (’, priorType , ’, 1m points) ’]);

40 fileName1 = strcat(fileName , ’_fidelity ’);

41 set(gca ,’xlim’ ,[0 1]); set(gca ,’FontSize ’ ,14);

42 print(h, ’-djpeg’, fileName1);

43

44 h = figure;

45 [d,x] = hist(dist ,100);

46 bar(x_axis ,d/ln); % distance distribution

47 axis ([0 ,1 ,0 ,0.04]); xlabel(’Distance ’);ylabel(’Prior Density ’);

48 % title([’Distance Distribution (’, priorType , ’, 1m points) ’]);

49 fileName2 = strcat(fileName , ’_distance ’);

50 set(gca ,’xlim’ ,[0 1]); set(gca ,’FontSize ’ ,14);

51 print(h, ’-djpeg’, fileName2);

52

53 h = figure;
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54 scatter(dist ,fdl ,’filled ’); % fidelity vs. distance

55 axis ([0,1,0,1]);xlabel(’Distance ’);ylabel(’Fidelity ’);

56 % title([’Fidelity vs. Distance (’, priorType , ’, 1m points) ’]);

57 fileName3 = strcat(fileName , ’_fidelity_vs_distance ’);

58 set(gca ,’FontSize ’ ,14);

59 print(h, ’-djpeg’, fileName3);

60

61 h = figure;

62 hist3([dist;fdl].’ ,[50,50]); % 3d histogram of fidelity and distance

63 xlabel(’Distance ’); ylabel(’Fidelity ’);

64 % title([’Fidelity and Distance (’, priorType , ’, 1m points) ’]);

65 set(get(gca ,’child’),’FaceColor ’,’interp ’,’CDataMode ’,’auto’);

66 set(gca ,’FontSize ’ ,14);

67 fileName4 = strcat(fileName , ’_fidelity_distance_3d_histogram ’);

68 print(h, ’-djpeg’, fileName4);

69 % fileName5 = strcat(fileName , ’_fidelity_distance_2d ’);

70 % view (0,90);

71 % print(h, ’-djpeg ’, fileName5);
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