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Introduction

• Synthetic geospatial networks integrate geographic information with connectivity, enabling realistic

simulations of spatial phenomena across various domains.

• They are often used as null models in hypothesis testing within network analysis.

• Synthetic geospatial networks are also essential pieces in simulations such as disease modeling,

pedestrian/traffic modeling, social interactions, and so on.

• PySGN extends classical network models with spatial considerations, producing synthetic geospatial

networks that mirror real-world spatial characteristics.
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Package Overview

• PySGN: a Python package for constructing synthetic geospatial 

networks.

• It extends three classical network models by incorporating the 

locations of nodes:

- Geospatial Erdős-Rényi                                                         

- Geospatial Barabási–Albert

- Geospatial Watts-Strogatz                                                       

• Offers an easy-to-use API, code examples, and documentations.
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Model: Geospatial Erdős–Rényi

• Classical Erdős–Rényi: each edge added with a constant probability 𝑝

• Geospatial Erdős–Rényi: edge probability decreases with edge length 𝑑, controlled by minimum 

edge length min_dist and decay exponent 𝑎:

𝑝 𝑑 𝑎,min_dist = min 1,
𝑑

min_dist

−𝑎
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Model: Geospatial Barabási-Albert

• Classical Barabási-Albert:

- Nodes added sequentially

- Probability of a new node to connect to an existing node 𝑖 is 𝑝𝑖 ∝ 𝑘𝑖, the degree of node 𝑖

• Geospatial Barabási-Albert:

- Nodes added sequentially

- Probability of a new node to connect to an existing node 𝑖 is 𝑝𝑖 ∝ 𝑘𝑖 ∙ min 1,
𝑑

min_dist

−𝑎

- Flexible node ordering: order in which nodes are added

- random, by attribute value, by spatial density (KNN or KDE), or through user-defined functions
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Model: Geospatial Barabási-Albert
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Model: Geospatial Barabási-Albert
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Model: Geospatial Watts-Strogatz

• Classical Watts-Strogatz:

- Create a ring lattice with each node connected to its 𝑘 neighbors

- Rewire each edge with probability 𝑝 to a random node

• Geospatial Watts-Strogatz:

- Connect each node with its 𝑘 nearest neighbors

- Rewire each edge with probability 𝑝 to a random node

- The target node is selected with probability 𝑝 𝑑 𝑎,min_dist = min 1,
𝑑

min_dist

−𝑎
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Model: Geospatial Watts-Strogatz
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Model: Geospatial Watts-Strogatz
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Model: Geospatial Watts-Strogatz
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Code Examples
Install `pysgn` using pip:

    $ pip install pysgn

Import functions and load data:

    import geopandas as gpd

    from pysgn import (

        geo_erdos_renyi_network,

        geo_barabasi_albert_network,

        geo_watts_strogatz_network,

    )

Load data using GeoPandas:

    gdf = gpd.read_file('your_gis_data.shp')
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graph = geo_erdos_renyi_network(
    gdf,
    a=3,                # optional
    scaling_factor=0.5, # optional
)

graph = geo_barabasi_albert_network(
    gdf,
    m=3,
    node_order='utility', # optional
    a=3,                  # optional
    scaling_factor=0.5,   # optional
)

graph = geo_watts_strogatz_network(
    gdf, 
    k=4,
    p=0.1,
    a=3,                # optional
    scaling_factor=0.5, # optional
)



Code Examples
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Set custom constraints on edges:

    graph = geo_watts_strogatz_network(

        gdf, 

        k=4,

        p=0.3,

        constraint=lambda u, v: u.group == v.group,

    )



Code Examples
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Set custom constraints on edges:

    graph = geo_watts_strogatz_network(

        gdf, 

        k=4,

        p=0.3,

        constraint=lambda u, v: u.group == v.group,

    )



Code Examples
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Set custom constraints on edges:

    graph = geo_watts_strogatz_network(

        gdf, 

        k=4,

        p=0.3,

        constraint=lambda u, v: u.group != v.group,

    )



Performance: up to 1,000 nodes

17



Performance: up to 100k nodes
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Conclusion

• PySGN provides a robust toolkit for generating synthetic 

geospatial networks by extending classical network models 

with spatial considerations.

• It integrates with the PyData ecosystem (e.g., GeoPandas, 

NetworkX), providing flexible API for custom constraints 

and various use-cases.

• Free and open-source! Source code available at: 

https://github.com/wang-boyu/pysgn
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https://pysgn.readthedocs.io

https://github.com/wang-boyu/pysgn


Acknowledgement

The algorithms implemented in PySGN are based on the following work with several improvements and 

modifications, including bug fixes, performance enhancements, and additional features. We would like to 

thank the authors for their contributions to the field of synthetic geospatial network generation.

- Gallagher, K., Anderson, T., Crooks, A., & Züfle, A. (2023). Synthetic Geosocial Network Generation. In 

Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks 

and Geoadvertising (pp. 15-24).

- Alizadeh, M., Cioffi-Revilla, C., & Crooks, A. (2017). Generating and analyzing spatial social networks. 

Computational and Mathematical Organization Theory, 23, 362-390.

21



Thank you for listening!
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