
PySGN

A Python Package for Constructing

Synthetic Geospatial Networks

Boyu Wang University at Buffalo

Andrew Crooks University at Buffalo

Taylor Anderson George Mason University

Andreas Züfle Emory University

2025 AAG Annual Meeting, Detroit, MI

Introduction

• Synthetic geospatial networks integrate geographic information with connectivity, enabling realistic

simulations of spatial phenomena across various domains.

• They are often used as null models in hypothesis testing within network analysis.

• Synthetic geospatial networks are also essential pieces in simulations such as disease modeling,

pedestrian/traffic modeling, social interactions, and so on.

• PySGN extends classical network models with spatial considerations, producing synthetic geospatial

networks that mirror real-world spatial characteristics.

2

Introduction

3

Disease

Modeling

Pedestrian

Modeling

Traffic Modeling

Package Overview

• PySGN: a Python package for constructing synthetic geospatial

networks.

• It extends three classical network models by incorporating the

locations of nodes:

- Geospatial Erdős-Rényi

- Geospatial Barabási–Albert

- Geospatial Watts-Strogatz

• Offers an easy-to-use API, code examples, and documentations.

4

NetworkX

PySGN

Model: Geospatial Erdős–Rényi

• Classical Erdős–Rényi: each edge added with a constant probability 𝑝

• Geospatial Erdős–Rényi: edge probability decreases with edge length 𝑑, controlled by minimum

edge length min_dist and decay exponent 𝑎:

𝑝 𝑑 𝑎,min_dist = min 1,
𝑑

min_dist

−𝑎

5

Model: Geospatial Barabási-Albert

• Classical Barabási-Albert:

- Nodes added sequentially

- Probability of a new node to connect to an existing node 𝑖 is 𝑝𝑖 ∝ 𝑘𝑖, the degree of node 𝑖

• Geospatial Barabási-Albert:

- Nodes added sequentially

- Probability of a new node to connect to an existing node 𝑖 is 𝑝𝑖 ∝ 𝑘𝑖 ∙ min 1,
𝑑

min_dist

−𝑎

- Flexible node ordering: order in which nodes are added

- random, by attribute value, by spatial density (KNN or KDE), or through user-defined functions

6

Model: Geospatial Barabási-Albert

7

Model: Geospatial Barabási-Albert

8

Model: Geospatial Watts-Strogatz

• Classical Watts-Strogatz:

- Create a ring lattice with each node connected to its 𝑘 neighbors

- Rewire each edge with probability 𝑝 to a random node

• Geospatial Watts-Strogatz:

- Connect each node with its 𝑘 nearest neighbors

- Rewire each edge with probability 𝑝 to a random node

- The target node is selected with probability 𝑝 𝑑 𝑎,min_dist = min 1,
𝑑

min_dist

−𝑎

9

Model: Geospatial Watts-Strogatz

10

Synthetic point data with locations

Model: Geospatial Watts-Strogatz

11

Model: Geospatial Watts-Strogatz

12

Code Examples
Install `pysgn` using pip:

 $ pip install pysgn

Import functions and load data:

 import geopandas as gpd

 from pysgn import (

 geo_erdos_renyi_network,

 geo_barabasi_albert_network,

 geo_watts_strogatz_network,

)

Load data using GeoPandas:

 gdf = gpd.read_file('your_gis_data.shp')

13

graph = geo_erdos_renyi_network(
 gdf,
 a=3, # optional
 scaling_factor=0.5, # optional
)

graph = geo_barabasi_albert_network(
 gdf,
 m=3,
 node_order='utility', # optional
 a=3, # optional
 scaling_factor=0.5, # optional
)

graph = geo_watts_strogatz_network(
 gdf,
 k=4,
 p=0.1,
 a=3, # optional
 scaling_factor=0.5, # optional
)

Code Examples

14

Set custom constraints on edges:

 graph = geo_watts_strogatz_network(

 gdf,

 k=4,

 p=0.3,

 constraint=lambda u, v: u.group == v.group,

)

Code Examples

15

Set custom constraints on edges:

 graph = geo_watts_strogatz_network(

 gdf,

 k=4,

 p=0.3,

 constraint=lambda u, v: u.group == v.group,

)

Code Examples

16

Set custom constraints on edges:

 graph = geo_watts_strogatz_network(

 gdf,

 k=4,

 p=0.3,

 constraint=lambda u, v: u.group != v.group,

)

Performance: up to 1,000 nodes

17

Performance: up to 100k nodes

18

19

Conclusion

• PySGN provides a robust toolkit for generating synthetic

geospatial networks by extending classical network models

with spatial considerations.

• It integrates with the PyData ecosystem (e.g., GeoPandas,

NetworkX), providing flexible API for custom constraints

and various use-cases.

• Free and open-source! Source code available at:

https://github.com/wang-boyu/pysgn

20

https://pysgn.readthedocs.io

https://github.com/wang-boyu/pysgn

Acknowledgement

The algorithms implemented in PySGN are based on the following work with several improvements and

modifications, including bug fixes, performance enhancements, and additional features. We would like to

thank the authors for their contributions to the field of synthetic geospatial network generation.

- Gallagher, K., Anderson, T., Crooks, A., & Züfle, A. (2023). Synthetic Geosocial Network Generation. In

Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks

and Geoadvertising (pp. 15-24).

- Alizadeh, M., Cioffi-Revilla, C., & Crooks, A. (2017). Generating and analyzing spatial social networks.

Computational and Mathematical Organization Theory, 23, 362-390.

21

Thank you for listening!

Welcome comments,

questions and suggestions.

@BoyuWang_

@AndyCrooks

@hellotaylora

@andreaszuefle

https://wang-boyu.github.io

https://gisagents.org

https://bit.ly/4bZmnPO

https://zuefle.org

bwang44@buffalo.edu

atcrooks@buffalo.edu

tander6@gmu.edu

azufle@emory.edu

	Slide 1: PySGN A Python Package for Constructing Synthetic Geospatial Networks
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Package Overview
	Slide 5: Model: Geospatial Erdős–Rényi
	Slide 6: Model: Geospatial Barabási-Albert
	Slide 7: Model: Geospatial Barabási-Albert
	Slide 8: Model: Geospatial Barabási-Albert
	Slide 9: Model: Geospatial Watts-Strogatz
	Slide 10: Model: Geospatial Watts-Strogatz
	Slide 11: Model: Geospatial Watts-Strogatz
	Slide 12: Model: Geospatial Watts-Strogatz
	Slide 13: Code Examples
	Slide 14: Code Examples
	Slide 15: Code Examples
	Slide 16: Code Examples
	Slide 17: Performance: up to 1,000 nodes
	Slide 18: Performance: up to 100k nodes
	Slide 19
	Slide 20: Conclusion
	Slide 21: Acknowledgement
	Slide 22: Thank you for listening! Welcome comments, questions and suggestions.

