### **MESA-GEO**

### A GIS EXTENSION FOR THE MESA AGENT-BASED MODELING FRAMEWORK IN PYTHON

Boyu Wang , Vincent Hess, Andrew Crooks GeoSim '22, Seattle, WA

November 1, 2022

University at Buffalo The State University of New York







## Introduction

- Mesa is an open-source agent-based modeling (ABM) framework written in Python, allowing users to quickly build and visualize agent-based models.
- Mesa-Geo is its GIS extension. Due to the modular design of Mesa, extending its functionalities is relatively straightforward, without the necessity of modifying its core components.

#### Why Python?

- There has been a trend of utilizing machine learning methods in and for ABM and GIS.
- Python is currently the dominant programming language for machine learning (ML): NumPy, pandas, scikit-learn, Keras, PyTorch, and of growing interest to GIScience (PySAL, GeoPandas, Rasterio ...).

### University at Buffalo The State University of New York



#### TIOBE Programming Community Index source: https://www.tiobe.com/tiobe-index





4

# Background

|                                  | NetLogo       | Repast<br>Simphony                      | AnyLogic             | MASON                        | GAMA                                | Mesa                  | AgentScript |
|----------------------------------|---------------|-----------------------------------------|----------------------|------------------------------|-------------------------------------|-----------------------|-------------|
| Initial Release Year             | 1999          | 2000                                    | 2000                 | 2003                         | 2009                                | 2015                  | 2018        |
| Latest Release Year              | 2022          | 2022                                    | 2022                 | 2022                         | 2022                                | 2022                  | 2022        |
| License                          | GPL           | BSD                                     | Proprietary          | Academic Free<br>License 3.0 | GPLv3                               | Apache 2.0            | GPLv3       |
| Implementation<br>Language       | Scala, Java   | Java                                    | Java                 | Java                         | Java                                | Python                | JavaScript  |
| Modeling Language /<br>Interface | NetLogo       | ReLogo,<br>statecharts,<br>Groovy, Java | GUI, Java,<br>UML-RT | Java                         | GAML<br>(GAma Modeling<br>Language) | Python                | JavaScript  |
| Raster Data Support              | gis-extension | Yes                                     | Yes                  | GeoMason<br>extension        | Yes                                 | Mesa-Geo<br>extension | Yes         |
| Vector Data Support              | gis-extension | Yes                                     | Yes                  | GeoMason<br>extension        | Yes                                 | Mesa-Geo<br>extension | Yes         |

# Background

#### Mesa

- Created in 2015. Source code: <u>https://github.com/projectmesa/mesa</u>
- Over the years, Mesa has been used in a wide range of application areas, from epidemiology, logistics, healthcare, to the modeling of electricity market, auction, food market, building, etc.

#### Mesa-Geo

etc.

- Created in 2017. Source code: <u>https://github.com/projectmesa/mesa-geo</u>
- Initially focused on vector data support. Our contributions are integrating more sophisticated GIS functionalities such as:
  - Raster data support
  - Consistent coordinate reference system (CRS) settings

along with other changes including frontend dependencies management, bug fixes,

| 🕑 Actions   🗄 F   | rojects 🛄 Wi   | ki ! Security | 🗠 Insights |  |  |  |
|-------------------|----------------|---------------|------------|--|--|--|
| Dependenc         | y graph        |               |            |  |  |  |
| Dependencies      | Dependents     | Dependabot    |            |  |  |  |
| Repositories that | depend on mesa |               |            |  |  |  |
|                   |                |               |            |  |  |  |

As of October 25, 2022. Source: <u>https://github.com/projectmesa/mesa/network/dependents</u>

### Architecture



High-level component diagram of Mesa & Mesa-Geo

### Architecture



Class diagram of the Agent, GeoAgent, and Cell classes



#### Class diagram of GeoSpace and its related classes



# Applications

Examples of GIS functions commonly needed in ABM:

- Basemaps
- GIS data import/export
- Raster data:
  - Digital elevation (e.g., pedestrian evacuation)
  - Neighborhood queries (e.g., Moore, von Neumann)
- Vector data:
  - Buffers
  - Shortest path queries (e.g., road network)
  - Contains/Within/Intersects/...
- Raster & vector data overlay



## **Example Models**

| " main • mesa-geo / examples / README.md                                                                                                                                                                            |  | Go to                           | file      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------|-----------|
| wang-boyu link examples to readthedocs                                                                                                                                                                              |  | Latest commit bcd08b7 on Sep 10 | 🕑 History |
| 1 contributor                                                                                                                                                                                                       |  |                                 |           |
| 16 lines (10 sloc)   684 Bytes                                                                                                                                                                                      |  | <> Blame 🖉                      | • 0 0     |
|                                                                                                                                                                                                                     |  |                                 |           |
| Examples                                                                                                                                                                                                            |  |                                 |           |
|                                                                                                                                                                                                                     |  |                                 |           |
| Vector Data                                                                                                                                                                                                         |  |                                 |           |
| Vector Data     GeoSchelling Model (Polygons)                                                                                                                                                                       |  |                                 |           |
| Vector Data <ul> <li>GeoSchelling Model (Polygons)</li> <li>GeoSchelling Model (Points &amp; Polygons)</li> </ul>                                                                                                   |  |                                 |           |
| Vector Data<br>• GeoSchelling Model (Polygons)<br>• GeoSchelling Model (Points & Polygons)<br>• GeoSIR Epidemics Model                                                                                              |  |                                 |           |
| Vector Data  GeoSchelling Model (Polygons) GeoSchelling Model (Points & Polygons) GeoSIR Epidemics Model Raster Data                                                                                                |  |                                 |           |
| Vector Data<br>• GeoSchelling Model (Polygons)<br>• GeoSchelling Model (Points & Polygons)<br>• GeoSIR Epidemics Model<br>Raster Data<br>• Rainfall Model                                                           |  |                                 |           |
| Vector Data<br>• GeoSchelling Model (Polygons)<br>• GeoSchelling Model (Points & Polygons)<br>• GeoSIR Epidemics Model<br>Raster Data<br>• Rainfall Model<br>• Urban Growth Model                                   |  |                                 |           |
| Vector Data<br>• GeoSchelling Model (Polygons)<br>• GeoSchelling Model (Points & Polygons)<br>• GeoSIR Epidemics Model<br>Raster Data<br>• Rainfall Model<br>• Urban Growth Model<br>Raster and Vector Data Overlay |  |                                 |           |

Link: https://github.com/projectmesa/mesa-geo/blob/main/examples

| ₭ Mesa-Geo<br>latest                                                                                        | 🌴 » Examples                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Search docs                                                                                                 | Examples                                                                                                                              |
| Tutorial                                                                                                    | Vector Data                                                                                                                           |
| <ul> <li>Examples</li> <li>Overview</li> <li>GeoSchelling Model (Polygons)</li> </ul>                       | <ul> <li>GeoSchelling Model (Polygons)</li> <li>GeoSchelling Model (Points &amp; Polygons)</li> <li>GeoSIR Epidemics Model</li> </ul> |
| GeoSchelling Model (Points &<br>Polygons)<br>GeoSIR Epidemics Model<br>Rainfall Model<br>Urban Growth Model | Raster Data <ul> <li>Rainfall Model</li> <li>Urban Growth Model</li> </ul>                                                            |
| Population Model                                                                                            | Raster and Vector Data Overlay                                                                                                        |

API Documentation

Population Model

Link: https://mesa-geo.readthedocs.io/en/latest/examples/overview.html

C Edit on GitHub



# Example: Digital Elevation Model

#### **RAINFALL MODEL**



- GeoSpace: a raster layer representing elevations.
- GeoAgents: raindrops.
- At each time step, raindrops are randomly created across the landscape to simulate rainfall.
- The raindrops flow from cells of higher elevation to lower elevation based on their eight surrounding cells (i.e., Moore neighbourhood).



# Example: Multiple Raster Layers

#### **URBAN GROWTH MODEL**



- **GeoSpace**: multiple raster layers representing slope, road, land use, urban area, and so on.
- Cells: land parcels.
- At each time step, each land parcel is decided whether it is suitable to be urbanized, based on the input raster layers as well as the user defined coefficients.



## Example: Raster & Vector Overlay

#### **POPULATION MODEL**



Number of Agents: 5196

- GeoSpace: •
  - a raster layer of population data for each cell.
  - a vector layer representing a lake.
- **GeoAgent**: people, created based on the population data. •
- The agents move randomly to neighbouring cells at each • time step.



## Example: Road Network

#### AGENTS AND NETWORKS MODEL



- **GeoSpace**: multiple vector layers, including buildings, lakes, and a road network. The road network is constructed from polyline data.
- GeoAgent: commuters.
- Buildings are randomly assigned to agents as their home and workplaces.
- Agents' commute routes can be found as the shortest path between entrances of their home and workplaces. Their movements are constrained on the road network.
- Source code available at <u>https://github.com/wang-boyu/agents-and-networks-in-python</u>



# Example: Points & Ploygons

#### **GEO SCHELLING (POLYGONS)**



- GeoSpace: only the agent layer containing GeoAgents.
- **GeoAgents**: the Level 2 European Nomenclature of Territorial Units for Statistics (NUTS-2) regions.
- During the running of the model, a polygon queries the colors of the surrounding polygon and if the ratio falls below a certain threshold (e.g., 40% of the same color), the agent moves to an uncolored polygon.



# Example: Points & Ploygons

#### **GEO SCHELLING (POINTS & POLYGONS)**



- **GeoSpace**: only the agent layer containing GeoAgents.
- GeoAgents:
  - NUTS-2 regions.
  - People residing in NUTS-2 regions.
- Each person resides in a randomly assigned region and checks the color ratio of its region against a pre-defined "happiness" threshold at every time step.
- If the ratio falls below a certain threshold (e.g., 40%), the agent is found to be "unhappy", and randomly moves to another region.



## Data Export

• Raster data



• Vector data



# Conclusion

- Mesa-Geo: an open-source GIS extension for the Mesa agent-based modeling framework in Python.
- By utilizing the rich software ecosystem of open-source scientific libraries (e.g., Rasterio, GeoPandas, NetworkX), users can import, manipulate and visualize georeferenced data in ABM.



https://github.com/projectmesa/mesa-geo



https://mesa-geo.readthedocs.io



# Acknowledgments

 Mesa-Geo is a community effort. Our special thanks to rht, Jackie Kazil and Tom Pike among many others for their invaluable support.



https://github.com/projectmesa/mesa-geo



https://mesa-geo.readthedocs.io

# Join us!

- Matrix chat room: <u>https://matrix.to/#/#mesa-geo:matrix.org</u>
- Monthly dev session: <u>https://github.com/projectmesa/mesa/discussions</u>
- Mesa-Geo discussions: <u>https://github.com/projectmesa/mesa-geo/discussions</u>
- Contributors guide: <u>https://github.com/projectmesa/mesa-geo/blob/main/CONTRIBUTING.md</u>



https://github.com/projectmesa/mesa-geo



https://mesa-geo.readthedocs.io

**University at Buffalo** The State University of New York

### THANK YOU FOR LISTENING!

### WELCOME COMMENTS, QUESTIONS AND

### SUGGESTIONS.



bwang44@buffalo.edu vincent.hess@posteo.de atcrooks@buffalo.edu





@wang-boyu @Corvince

 $\mathbf{O}$ 

@acrooks2

